vinyloxonium (12) is indicated to be a relatively low-energy species separated from 11 by a substantial barrier to intramolecular rearrangement and is therefore an attractive prospect for experimental observation.
(iii) The only stable form of protonated oxirane is the O -corner-protonated isomer (7).
(iv) Although the 2-hydroxyethyl cation (10) is stable with respect to cyclization to O-protonated oxirane (7) and proton migration to vinyloxonium (12), it collapses without activation energy to the 1 -hydroxyethyl cation (11).
(v) The ethoxy cation (16) is also indicated to be an unstable
species, collapsing without activation to 9 or 11.
(vi) STO-3G optimized structures are found to provide a reasonable basis for calculating activation energies at higher levels of theory.
(vii) Both polarization functions and electron correlation are found to be important in providing an accurate description of the $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{+}$potential energy surface.

Acknowledgment. We thank Mr. M. A. Ballard for assistance with some of the calculations. We are indebted to Dr. Dudley Williams for helpful and stimulating discussions.

An Investigation of the Mechanism of Phosphine Photolysis

J. P. Ferris*1 and Robert Benson
Contribution from the Department of Chemistry, Rensselaer Polytechnic Institute, Troy. New York 12181. Received June 11. 1980

Abstract

Photolysis of PH_{3} gives $\mathrm{P}_{2} \mathrm{H}_{4}$ as an initial photoproduct. The concentration of $\mathrm{P}_{2} \mathrm{H}_{4}$ increases to a maximum and then decreases during the course of the photolysis. Disproportionation of PH_{2} was eliminated as a reaction by the observation that the ratio of $4 n_{\mathrm{P}_{4}} / n_{\mathrm{P}_{2} \mathrm{H}_{4}}$ extrapolates to near zero at zero reaction time. The yield of $\mathrm{P}_{2} \mathrm{H}_{4}$ increases with increasing PH_{3} concentration, but it is only slightly affected by the addition of SF_{6} or N_{2}. The absence of an effect with the added inert gases eliminates the possibility of termolecular reactions and hot atom reactions in the formation of $\mathrm{P}_{2} \mathrm{H}_{4} . \mathrm{P}_{2} \mathrm{H}_{4}$ formation from PH_{2} was shown to be a gas phase and not a wall reaction by flash photolysis studies. The pseudo-second-order rate constant determined for the formation of $\mathrm{P}_{2} \mathrm{H}_{4}\left((5.4 \pm 2.4) \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)$ is diffusion controlled and close to the rate constant for the formation of $\mathrm{N}_{2} \mathrm{H}_{4}$ from NH_{2}. That the rate constants are comparable suggests both hydrides are formed by the same reaction pathway. Initial quantum yields are $\Phi_{\mathrm{PH}_{3}}\left(\mathrm{PH}_{3}\right.$ loss $)=1.78 \pm 0.18, \Phi_{\mathrm{H}_{2}}=0.43 \pm 0.23, \Phi_{\mathrm{P}_{2} \mathrm{H}_{4}}=0.80 \pm 0.08$, and $\Phi_{4 \mathrm{P}_{4}}=0.04 \pm 0.16$. The value of $\Phi_{\mathrm{PH}_{3}}$ close to 2 indicates the formation of PH_{2} by reaction of H and PH_{3} (reaction 3) is an important reaction pathway in PH_{3} photolysis. A new mechanism is proposed for PH_{3} photolysis, and the significance of these findings to the atmospheric chemistry of Jupiter is discussed.

Phosphine $\left(\mathrm{PH}_{3}\right)$ photochemistry has been studied sporadically since the initial work of Melville in 1932, ${ }^{2}$ but these limited studies are dwarfed by the extensive investigations of NH_{3}, the corresponding group 5 hydride. ${ }^{3}$ The apparent lack of interest in PH_{3} may reflect the hazardous nature of the compound ${ }^{4}$ as well as the experimental problem of having a solid photoproduct, P_{4}, coat the walls of the photolysis cell; neither of these problems complicates the study of NH_{3} photochemistry. The discovery of PH_{3} in the atmospheres of Jupiter and Saturn by Ridgway, ${ }^{5}$ a result which has subsequently been confirmed by airborne observations, ${ }^{6}$ ground-based studies, ${ }^{7}$ and the Voyager II mission, ${ }^{8}$ has prompted increased interest in PH_{3} photochemistry. The discovery of PH_{3} led to the suggestion that the red coloration of the Great Red Spot of Jupiter is due to the photolysis of PH_{3} to red phosphorus $\left(\mathbf{P}_{4}\right) .{ }^{9}$

[^0]The PH_{3} may be formed from phosphorus in the lower, hotter levels of the Jovian atmosphere or by reaction with H atoms in the upper atmosphere or with the $\mathrm{NH}_{3}-\mathrm{H}_{2} \mathrm{O}$ clouds in the upper troposphere. ${ }^{10}$
The primary process in the photolysis of PH_{3} between 160 and 210 nm is predissociation to PH_{2} and H atoms (eq 1) ${ }^{11}$ which is

$$
\begin{equation*}
4 \mathrm{PH}_{3} \xrightarrow{h \nu} \mathrm{P}_{4}+6 \mathrm{H}_{2} \tag{1}
\end{equation*}
$$

reflected in the featureless UV spectrum of PH_{3} from 240 nm down to the vacuum ultraviolet. ${ }^{12}$ Red phosphorus and H_{2} are the only photoproducts that have been reported (eq 1). ${ }^{2,13}$

The quantum yield for PH_{3} loss ($\Phi_{\mathrm{PH}_{3}}$) was reported to be 0.5^{2} and was not affected by pressure variations of $10-760$ torr and temperature variations of $15-300^{\circ} \mathrm{C}$. The $\Phi_{\mathrm{PH}_{3}}$ increased with an increase in the surface to volume ratio of the reaction cell. This finding suggests that the secondary reactions of H and PH_{2} occurred on the wall of the reaction vessel and that their activation energies were small. One of the proposed secondary reactions, the recombination of H and PH_{2} (reaction 8), would account for a value of $\Phi_{\mathrm{PH}_{3}}$ less than 1 .

H atoms have been demonstrated to have an important role in the decomposition of $\mathrm{PH}_{3}{ }^{14}$ They react with PH_{3} to give the same products, H_{2} and P_{4}, as are observed in the photolysis of PH_{3}. The rate constant for the reaction of H atoms with PH_{3}

[^1]Table I. Variation in Yield of $\mathrm{P}_{2} \mathrm{H}_{4}$ and P_{4} with
Time of Irradiation

time, h	$10^{7} \mathrm{P}_{2} \mathrm{H}_{4}, \mathrm{~mol}$	$10^{8} \mathrm{P}_{4}, \mathrm{~mol}$
0.5	1.87	0.55
1.0	2.72	1.6
2.0	3.79	3.8
3.0	3.81	6.5
4.0	4.52	6.2
5.0	4.72	10.0
6.0	3.99	12.2
7.4	3.78	16.7
15.5	1.54	37.2
24.8	0.97	26.8
48.0	0.61	29.3

(eq 3) has been found to be $2.72 \times 10^{10} \exp (-1470 / R T)$ and is close to diffusion controlled at $20^{\circ} \mathrm{C}\left(k=2.2 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right) .{ }^{15}$ This rapid rate implied that the H atoms formed by the photolysis of PH_{3} should effect the decomposition of other PH_{3} molecules and is also the basis for the postulate that the H atoms produced by the photolysis of NH_{3} in the Jovian atmosphere will accelerate the decomposition of $\mathrm{PH}_{3}{ }^{16}$

The transients $\mathrm{PH}_{2}, \mathrm{PH}$, and P_{2} were reported in flash photolysis studies of $\mathrm{PH}_{3}{ }^{13}$ All of these intermediates reached their maximum concentration levels 15μ s after the flash, indicating they were formed in the gas phase. Reactions 4 and 5 were proposed to account for the observation of PH and P_{2}. A reaction pathway consistent with the steady-state and flash photolysis data in the literature is given in reactions $2-8$. Reactions 7 and 8 probably occur mainly on the wall of the reaction vessel.

$$
\begin{gather*}
\mathrm{PH}_{3} \xrightarrow{h \nu} \mathrm{PH}_{2}+\mathrm{H} \tag{2}\\
\mathrm{H}+\mathrm{PH}_{3} \rightarrow \mathrm{PH}_{2}+\mathrm{H}_{2} \tag{3}\\
2 \mathrm{PH}_{2} \rightarrow \mathrm{PH}+\mathrm{PH}_{3} \tag{4}\\
2 \mathrm{PH} \rightarrow \mathrm{P}_{2}+\mathrm{H}_{2} \tag{5}\\
2 \mathrm{P}_{2} \rightarrow \mathrm{P}_{4} \tag{6}\\
2 \mathrm{H} \rightarrow \mathrm{H}_{2} \tag{7}\\
\mathrm{H}+\mathrm{PH}_{2} \rightarrow \mathrm{PH}_{3} \tag{8}\\
2 \mathrm{PH}_{2} \xrightarrow{\mathrm{M}} \mathrm{P}_{2} \mathrm{H}_{4} \tag{9}
\end{gather*}
$$

In reviewing the studies published on PH_{3} photolysis, we were surprised that its photochemistry did not more closely parallel that of NH_{3}. In particular there was no report of the formation of diphosphine (reaction 9) as a product even though hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is a central photoproduct in the photolysis of NH_{3} to $\mathrm{N}_{2}{ }^{3}$ It was also puzzling that the quantum yield for PH_{3} loss was only 0.5 especially since the large value for the rate constant of eq 3^{15} suggested that the initial quantum yield for the photolysis of PH_{3} should be greater than 1 and may even approach 2 . We undertook this investigation to clarify the mechanism of PH_{3} photolysis and to better understand the possible role of this compound in the atmospheric chemistry of Jupiter.

Results and Discussion

Diphosphine ($\mathrm{P}_{2} \mathrm{H}_{4}$) was observed as a photoproduct on short-term irradiation of 87 torr of PH_{3} with a low-pressure mercury lamp (253.7 and 184.9 nm) or iodine lamp (206.2 nm). ${ }^{17}$ It was detected by an increased UV absorption in the photolysate extending from about 250 nm down to that of PH_{3} at 210 nm . On prolonged irradiation this absorption disappeared and only that of PH_{3} remained.

A sample of the photochemically formed $\mathrm{P}_{2} \mathrm{H}_{4}$ was obtained by repeated short-term irradiations of PH_{3} followed by conden-

[^2]

Figure 1. Absorption spectrum of $\mathrm{P}_{2} \mathrm{H}_{4}$.

Figure 2. $P_{2} H_{4}(\bullet)$ and $P_{4}(\Delta)$ yields with time of irradiation.
sation of the $\mathrm{P}_{2} \mathrm{H}_{4}$ at $-116^{\circ} \mathrm{C}$. Its identity as $\mathrm{P}_{2} \mathrm{H}_{4}$ was established by comparison of its IR spectrum, ${ }^{18}$ UV spectrun (Figure 1), and gas chromatographic retention time with those of an authentic sample. ${ }^{19}$

Our observation that the $\mathrm{P}_{2} \mathrm{H}_{4}$ concentration decreased on prolonged irradiation prompted an investigation of the variation in $\mathrm{P}_{2} \mathrm{H}_{4}$ yield with the extent of irradiation (Table I). The $\mathrm{P}_{2} \mathrm{H}_{4}$ was determined from the UV absorbance of the photolysate at 235 nm corrected for the absorbance of the P_{4} layer on the window of the irradiation cell. The yield of phosphorus was determined after its oxidation to phosphate, ${ }^{20}$ and the amount of PH_{3} decomposed was determined from the stoichiometry given in eq 1.

[^3]

Figure 3. Ratio $4 n_{\mathrm{P}_{4}} / n_{\mathrm{P}_{2} \mathrm{H}_{4}}$ with time of irradiation.
The yield of P_{4} levels off after 16 h (Figure 2), a result which reflects the attenuation of the incident radiation by the P_{4} on the cell window. The yield of $\mathrm{P}_{2} \mathrm{H}_{4}$ reaches a maximum after 4 h and then decreases to about 20% of that maximum value (Figure 2). The diminished yield of $\mathrm{P}_{2} \mathrm{H}_{4}$ on extended irradiation explains why it was not detected in previous studies ${ }^{2,13}$ since the early workers had performed their analyses after prolonged irradiation when the $\mathrm{P}_{2} \mathrm{H}_{4}$ yield was low.

The variation in the yield of $\mathrm{P}_{2} \mathrm{H}_{4}$ with time of irradiation (Figure 2) is not understood. A similar time variation of the $\mathrm{N}_{2} \mathrm{H}_{4}$ yield during NH_{3} photolysis was reported without comment. ${ }^{21}$ One postulate which would explain the $\mathrm{P}_{2} \mathrm{H}_{4}$ variation but not the $\mathrm{N}_{2} \mathrm{H}_{4}$ variation, is an effect due to the diminished light intensity resulting from the buildup of the P_{4} layer on the cell window. $\mathrm{P}_{2} \mathrm{H}_{4}$ formation is a second-order reaction with respect to PH_{2} (eq 9) while $\mathrm{P}_{2} \mathrm{H}_{4}$ decomposition is first order with respect to PH_{2} or H (eq 10 and 11). Decomposition of $\mathrm{P}_{2} \mathrm{H}_{4}$ becomes more important with decreasing light intensity than its formation. This explanation of the variation in $\mathrm{P}_{2} \mathrm{H}_{4}$ yield and other explanations based on effects due to the P_{4} layer were excluded by observing that comparable yields of $\mathrm{P}_{2} \mathrm{H}_{4}$ were obtained when fresh samples of PH_{3} were irradiated in a clean cell or in a cell which had a P_{4} coating the window from a prior 3-h photolysis of PH_{3}. Another explanation of the decrease in $\mathrm{P}_{2} \mathrm{H}_{4}$ and $\mathrm{N}_{2} \mathrm{H}_{4}$ concentrations on prolonged photolysis may be an undetermined autocatalytic process which results in the production of H atoms. These H atoms (or other radical species) would be expected to readily attack $\mathrm{P}_{2} \mathrm{H}_{4}$ (eq 10) and $\mathrm{N}_{2} \mathrm{H}_{4},{ }^{22}$ thereby accelerating the decomposition of these molecules to phosphorus and nitrogen, respectively.

Disproportionation of the initially formed PH_{2} was proposed for the formation of P_{2} on photolysis of PH_{3} (eq 4-6). ${ }^{2,13}$ Our discovery of $\mathrm{P}_{2} \mathrm{H}_{4}$ as a reaction intermediate suggests an alternative pathway for PH_{2} disappearance, namely, combination of PH_{2} to form $\mathrm{P}_{2} \mathrm{H}_{4}$. If disproportionation of PH_{2} (reaction 4) is a competitive pathway for PH_{2} disappearance, then both P_{4} and $\mathrm{P}_{2} \mathrm{H}_{4}$ will be formed concurrently at short times. It is shown in the Experimental Section that

$$
\lim _{t \rightarrow 0}\left(4 n_{\mathrm{P}_{4}} / n_{\mathrm{P}_{2} \mathrm{H}_{4}}\right)=k_{4} / k_{9}
$$

An extrapolation to zero irradiation time of plot of $4 n_{\mathrm{P}_{4}} / n_{\mathrm{P}_{2} \mathrm{H}_{4}}$ vs. time of irradiation (Figure 3) gives an intercept close to zero indicating that disproportionation of PH_{2} is not a significant pathway for the formation of P_{4}.

[^4]Table II. Variation in $\mathrm{P}_{2} \mathrm{H}_{4}$ and P_{4} Yield with PH_{3} Pressure

irradiation time, h	$10^{7}\left(\mathrm{PH}_{3}\right.$ pressure $),$ torr	$10^{7}\left(\mathrm{P}_{2} \mathrm{H}_{4}\right.$ yield $),$ mol	$10^{7}\left(\mathrm{P}_{4}\right.$ yield $),$ mol	$10^{7}\left(\mathrm{PH}_{3}\right.$ decom- posed $),{ }^{a} \mathrm{~mol}$
0.5	28.7	1.36		
	57.6	1.59		
	103.6	1.70		
	196.7	2.62		
	398.5	2.86		
	596.7	3.46		
	49.9	0.55	4.0	17.1
	87.2	0.87	3.3	14.8
	188.6	1.31	4.5	20.5
	340.5	1.83	3.7	18.6
	416.8	2.42	2.8	15.8
	491.8	2.83	2.3	14.9
${ }^{a} n_{\mathrm{PH}_{3}}=4 n_{\mathrm{P}_{4}}+2 n_{\mathrm{P}_{2} \mathrm{H}_{4} .}$				

Table III. Variation in $\mathrm{P}_{2} \mathrm{H}_{4}$ Yield with N_{2} and SF_{6} Pressure ${ }^{a}$

PH_{3}, torr	added gas	added gas pressure, torr	$10^{8}\left(\mathrm{P}_{2} \mathrm{H}_{4}\right.$ yield $),$ mol
0.5			6.0
0.5	$\mathrm{~N}_{2}$	147	4.1
0.5	$\mathrm{~N}_{2}$	481	6.5
30.2			12.2
30.2	SF_{6}	177	13.6
30.2	$\mathrm{~N}_{2}$	320	16.6
30.2	$\mathrm{~N}_{2}$	534	16.2
30.2	$\mathrm{~N}_{2}$	538	15.1
30.2	SF_{6}	574	15.0

${ }^{a}$ A 0.5 -h irradiation time.
Table IV. Flash Photolysis of PH_{3}

PH_{3}, torr	H_{2}, torr	λ, nm	A^{a}	$A_{235}{ }^{b}$	A / A_{235}	normalized absorbance ratio c
1.33	180	235	0.0495	0.0256	1.93	1
1.33	180	240	0.0360	0.0258	1.34	0.69
1.33	180	245	0.0193	0.0202	0.96	0.50
1.33	180	260	0.0133	0.0300	0.44	0.23
1.33	180	280	0.0065	0.0266	0.24	0.12
0.94	220	235	0.0261	0.0148	1.76	1
0.94	220	232.5	0.0453	0.0172	2.63	1.49
0.94	220	230	0.0412	0.0160	2.58	1.47
0.94	220	225	0.0642	0.0222	2.89	1.64

${ }^{a}$ Absorbance measured 300μ s after the flash. ${ }^{b}$ Absorbance measured 1 h after the flash on Cary 219 after the P_{4} settled.
${ }^{c}$ Absorbance ratio normalized to $A=1$ at 235 nm .
The effect of pressure on the conversion of PH_{3} to P_{4} and $\mathrm{P}_{2} \mathrm{H}_{4}$ was investigated to probe the mechanism of the photolysis. When the PH_{3} pressure is increased, the yield of $\mathrm{P}_{2} \mathrm{H}_{4}$ increases and the yield of P_{4} decreases (Table II); however, if the pressure of PH_{3} remains constant and the total pressure is altered by the addition of an inert gas such as N_{2} or SF_{6}, there is little or no effect on the yield of $\mathrm{P}_{2} \mathrm{H}_{4}$ (Table III). This increase in $\mathrm{P}_{2} \mathrm{H}_{4}$ concentration with PH_{3} pressure may be due to an increase in the rate of reaction 9 because the light is absorbed in a smaller volume resulting in concentrating of PH_{2} near the cell window. An alternative explanation is there is an increase in the rate of reaction 3 because of the greater concentration of PH_{3} and a corresponding decrease in the rate of destruction of $\mathrm{P}_{2} \mathrm{H}_{4}$ (reaction 10). Termolecular processes and hot atom reactions are eliminated at PH_{3} pressures ≥ 0.5 torr by the absence of an effect of N_{2} or SF_{6} pressure on the formation of $\mathrm{P}_{2} \mathrm{H}_{4}$.
The absence of wall effects on the formation of $\mathrm{P}_{2} \mathrm{H}_{4}$ was shown by flash photolysis studies. Our detection of $\mathrm{P}_{2} \mathrm{H}_{4}$ by flash photolysis conflicts with earlier studies where it was concluded that little or none is formed. ${ }^{13}$ The $\mathrm{P}_{2} \mathrm{H}_{4}$ was identified in the present work by its UV absorption spectrum (Figure 4) which was obtained by measuring the absorbance at different wavelengths $300 \mu \mathrm{~s}$ after the flash. This spectrum correlates well with the

Figure 4. Normalized absorption spectra of $\mathrm{P}_{2} \mathrm{H}_{4}$ determined from flash photolysis results (\bullet) and a pure sample ($\mathbf{\Lambda}$).

Table V. Quantum Yields as a Function of Quanta Absorbed by PH_{3}

$10^{7} Q_{\mathrm{PH}_{3}}$, einstein	$\mathrm{PH}_{3}{ }^{\mathbf{a}}$	H_{2}	$\mathrm{P}_{2} \mathrm{H}_{4}$	$4 \mathrm{P}_{4}$
	1.63	0.75	0.72	0.19
	1.57	0.74	0.72	0.13
5.64		0.56	0.52	
5.67	1.03	0.58	0.50	0.03
9.04		0.76	0.41	
11.9	0.97	1.13	0.38	0.22
13.2	0.87	1.14	0.31	0.25
14.0	0.76	1.14	0.18	0.39
14.2	0.81	1.30	0.20	0.41
15.4	0.84	1.13	0.16	0.52
17.4	0.67	1.59	0.097	0.49
19.8	0.65	1.27	0.054	0.54

${ }^{\text {a }}$ Moles of PH_{3} decomposed calculated from $n_{\mathrm{PH}_{3}}=2 n_{\mathrm{P}_{2} \mathrm{H}_{4}}+$ $4 n_{P_{4}}$.
spectrum of pure $\mathrm{P}_{2} \mathrm{H}_{4}$ with the exception in the longer wavelength region. That $\mathrm{P}_{2} \mathrm{H}_{4}$ is formed in the gas phase was established by the observation that it is formed in less than $300 \mu \mathrm{~s}$ after the flash. The $\mathrm{P}_{2} \mathrm{H}_{4}$ cannot be formed on the cell wall because this time interval is too short for PH_{2} radicals to diffuse to the cell wall and combine to form $\mathrm{P}_{2} \mathrm{H}_{4}$ and for the $\mathrm{P}_{2} \mathrm{H}_{4}$ to then diffuse to the path of the analyzing beam passing through the center of the photolysis cell. A pseudo-second-order rate constant of $(5.4 \pm$ 2.4) $\times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$, consistent with a near diffusion-controlled reaction, was calculated from the flash data (Table V) for the combination of PH_{2} to $\mathrm{P}_{2} \mathrm{H}_{4}$ (reaction 9). A comparable pseu-do-second-order rate constant of $2.5 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ was reported for the combination of NH_{2} to $\mathrm{N}_{2} \mathrm{H}_{4}$ at 10 torr of $\mathrm{NH}_{3},{ }^{23,24}$ a result which lends support to the rate constant for $\mathrm{P}_{2} \mathrm{H}_{4}$ formation measured in the present study.

The large rate constant for reaction $3\left(2.3 \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)^{15}$ suggests that hydrogen atoms formed by photolysis of PH_{3} should effect the decomposition of another molecule of PH_{3}. The

[^5]quantum yield for PH_{3} loss could then be greater than 1 and will have a limiting value of 2 . Since the value of 0.5 reported for $\Phi_{\mathrm{PH}_{3}}$ by Melville ${ }^{2}$ appeared to be inconsistent with the mechanistic conclusions of this study, we decided to determine $\Phi_{\mathrm{PH}_{3}}$ from the quantum yields for the formation of $\mathrm{H}_{2}, \mathrm{P}_{4}$, and $\mathrm{P}_{2} \mathrm{H}_{4}$. A difficulty with these quantum yield measurements is the attenuation of the incident light by the photochemically formed phosphorus which means a correction factor must be determined to calculate the amount of light absorbed by the $\mathrm{PH}_{3}\left(Q_{\mathrm{PH}_{3}}\right)$ from the light incident on the cell. Melville measured the cell transmittance before and after irradiation and used an average value of the transmittance as a measure of the decreased light intensity. ${ }^{2}$ This calculation is based on the erroneous assumption that the P_{4} transmittance decreases linearly with time. Actually the rate of photolysis decreases exponentially as the P_{4} layer increases. Consequently Melville overestimated the value of $Q_{\mathrm{PH}_{3}}$, and the quantum yield he calculated was too low. In the present study a series of measurements of the light absorbed by the NH_{3} actinometer ($Q_{\mathrm{NH}_{3}}$) and the transmission of the phosphorus layer ($T_{\mathrm{P}_{4}}$) were made at different exposure times. A plot of $T_{\mathrm{P}_{4}}$ vs. $Q_{\mathrm{NH}_{3}}$ permitted the calculation of $Q_{\mathrm{PH}_{3}}$ from $\sum_{i} T_{\mathrm{P}_{4}} Q_{\mathrm{NH}_{3}}^{i}$ at equal intervals on the $Q_{\mathrm{NH}_{3}}$ axis; $Q_{\mathrm{NH}_{3}}^{i}$ is a constant and $T_{\mathrm{P}_{4}}^{i}$ is the average value of $T_{\mathrm{P}_{4}}$ in the i th interval. A plot of quanta of light absorbed by $\mathrm{PH}_{3}\left(Q_{\mathrm{PH}_{3}}\right)$ vs. $Q_{\mathrm{NH}_{3}}$ is obtained from which $Q_{\mathrm{PH}_{3}}$ can be obtained for any value of $Q_{\mathrm{NH}_{3}}$. The procedure must be repeated at each pressure of PH_{3} investigated. The values of the quantum yields for the loss of PH_{3} and the formation of $\mathrm{H}_{2}, \mathrm{P}_{2} \mathrm{H}_{4}$, and $4 \mathrm{P}_{4}$ vs. $Q_{\mathrm{PH}_{3}}$ are listed in Table V .

Extrapolation of the data in Table V to zero reaction time provides insight into the mechanism of the reaction at the initial stage of the reaction. The quantum yields at zero reaction time are $\Phi_{\mathrm{PH}_{3}}\left(\mathrm{PH}_{3}\right.$ loss $)=1.78 \pm 0.18, \Phi_{\mathrm{H}_{2}}=0.43 \pm 0.23, \Phi_{\mathrm{P}_{2} \mathrm{H}_{4}}=$ 0.80 ± 0.08, and $\Phi_{4 \mathrm{P}_{4}}=0.04 \pm 0.16$. The significance of reaction 3 in the decomposition of PH_{3} is shown by the quantum yield for PH_{3} loss (1.78) which is close to 2 at zero reaction time. The quantum yield for $\mathrm{P}_{2} \mathrm{H}_{4}$ formation (0.80) which is close to 1 also reflects the importance of reaction 3 in forming PH_{2} in addition to its formation in the initial photochemical step (reaction 2). The one surprising observation is the low yalue of $\Phi_{H_{2}}(0.43)$ since values closer to 1 would be expected due to the formation of H_{2} by the reaction of H with PH_{3} (reaction 3).

The complexity of the reaction mechanism at longer reaction times is reflected in the decrease in the quantum yield for PH_{3} loss (Table V). The value for $\Phi_{\mathrm{PH}_{3}}$ decreases to 0.8 after 5 h . This decrease from 1.78 may reflect the competing reaction of PH_{2}. with other photoproducts such as $\mathrm{P}_{2} \mathrm{H}_{4}$ to regenerate PH_{3}.

If Melville's method of the average P_{4} transmittance is used to correct for the buildup of the P_{4} layer during the course of the reaction, ${ }^{2}$ the calculated quantum yield for PH_{3} loss is 0.5 after 10 -h irradiation. This significantly lower value of $\Phi_{\mathrm{PH}_{3}}$ underlines the differences in the methods used to correct for P_{4} transmittance. An extent of irradiation comparable to ours is indicated by Melville's calculations of 0.5 for $\Phi_{\mathrm{PH}_{3}}$, and this exposure time may account for his failure to detect $\mathrm{P}_{2} \mathrm{H}_{4}$ since the concentration is half the maximum value.

Our findings require substantial modification of the previous mechanism of PH_{3} photolysis: (1) Values of $\Phi_{\mathrm{PH}_{3}}$ greater than unity at short exposure time indicate that hydrogen abstraction by hydrogen atoms from PH_{3} (reaction 3) is an important reaction and (2) $\Phi_{4 \mathrm{P}_{4}}$ of 0.04 ± 0.16 compared to $\Phi_{\mathrm{P}_{2} \mathrm{H}_{4}}$ of 0.80 ± 0.08 at zero reaction time indicates that combination of PH_{2} radicals (reaction 9) is much more important than disproportionation (reaction 3).

The mechanism of the conversion of $\mathrm{P}_{2} \mathrm{H}_{4}$ to P_{4} was not investigated in detail in the present study, but plausible reaction pathways can be suggested by analogy with the reactions known for the photolysis of NH_{3} to N_{2} via $\mathrm{N}_{2} \mathrm{H}_{4} \cdot{ }^{3,22,25,26}$ Hydrogen abstraction from $\mathrm{P}_{2} \mathrm{H}_{4}$ by PH_{2} (eq 11) and H (eq 10) would

[^6]\[

$$
\begin{gather*}
\mathrm{P}_{2} \mathrm{H}_{4}+\mathrm{H} \rightarrow \mathrm{P}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \tag{10}\\
\mathrm{P}_{2} \mathrm{H}_{4}+\mathrm{PH}_{2} \rightarrow \mathrm{P}_{2} \mathrm{H}_{3}+\mathrm{PH}_{3} \tag{11}\\
2 \mathrm{P}_{2} \mathrm{H}_{3} \rightarrow \mathrm{P}_{2} \mathrm{H}_{2}+\mathrm{P}_{2} \mathrm{H}_{4} \tag{12}\\
\mathrm{P}_{2} \mathrm{H}_{3}+\mathrm{PH}_{2} \rightarrow \mathrm{P}_{2} \mathrm{H}_{2}+\mathrm{PH}_{3} \tag{13}\\
2 \mathrm{P}_{2} \mathrm{H}_{3} \rightarrow \mathrm{P}_{4} \mathrm{H}_{6} \tag{14}\\
\mathrm{P}_{4} \mathrm{H}_{6} \rightarrow 2 \mathrm{PH}_{3}+\mathrm{P}_{2} \tag{15}\\
\mathrm{P}_{2} \mathrm{H}_{2} \rightarrow \mathrm{P}_{2}+\mathrm{H}_{2} \tag{16}
\end{gather*}
$$
\]

generate $P_{2} H_{3}$ which is converted to P_{2} via $P_{2} H_{2}$ (eq 12, 13, and 16) or $\mathrm{P}_{4} \mathrm{H}_{6}$ (eq 14 and 15). The final conversion of P_{2} to P_{4} (eq 6) is a well-established reaction. ${ }^{1}$ This mechanism is still incomplete since it does not explain the maximum in the $\mathrm{P}_{2} \mathrm{H}_{4}$ yield shown in Figure 2.

None of the reactions proposed for P_{4} formation account for the observation of PH by flash photolysis. ${ }^{13}$ It is possible that the PH observed is formed by the low level of PH_{2} disproportionation indicated in Figure 3. Alternatively the PH may be formed by photochemical processes (e.g., $\mathrm{P}_{2} \mathrm{H}_{2}$ photolysis) in the flash photolysis studies which are not observed in the continuous illumination experiments where a lower intensity light source is used.

These studies indicate that $\mathrm{P}_{2} \mathrm{H}_{4}$ would be expected to be a minor constituent of the atmosphere of the Jovian planets since it is formed efficiently in the gas phase ($\Phi_{\mathrm{P}_{2} \mathrm{H}_{4}}=0.8$) by PH_{3} photolysis. Most of it may be converted to ${ }^{\mathrm{P}_{4}}$; however there should be a steady-state concentration sufficient to be detected either by ground-based IR measurements ${ }^{7}$ or during the Galileo orbiter and probe of the Jovian atmosphere. The recent report of the effect of acetylene on PH_{3} photolysis ${ }^{27}$ suggests that the other constituents of the Jovian atmosphere may have a significant effect on its photochemistry. The photolysis of $\mathrm{PH}_{3}-\mathrm{NH}_{3}$ mixtures under the conditions where they absorb light on Jupiter (150 K (760 torr)) especially merit investigation because NH_{3} and PH_{3} are probably present in the same regions of the Jovian atmosphere, ${ }^{9}$ both compounds absorb in the same spectral range and their photolyses proceed by similar reaction pathways. It has already been suggested that NH_{3} photolysis may accelerate the decomposition of PH_{3} on Jupiter. ${ }^{16}$ The present studies indicate that $\mathrm{PH}_{2} \mathrm{NH}_{2}{ }^{28}$ may be formed by the combination of the photochemically formed PH_{2} and NH_{2}. Further decomposition of $\mathrm{PH}_{2} \mathbf{N H}_{2}$ to phosphorus paranitride $(\mathrm{PN})_{x}$ may also take place. Phosphorus paranitride, a reddish brown polymer, ${ }^{29}$ may also be responsible for some of the coloration in the atmosphere of Jupiter.

Experimental Section

General Data. IR spectra were determined on a Perkin-Elmer 621 spectrophotometer and UV spectra on a Unicam SP 800A or a Cary 219 spectrophotometer. H_{2} analysis was performed by gas chromatography on an Aerograph A-700 gas chromatograph (thermal conductivity detector) using a $6-\mathrm{ft}$ molecular sieve 5 A column operating at $100^{\circ} \mathrm{C}$ using argon as the carrier gas. PH_{3} was removed before injecting the H_{2} into the gas chromatograph. Diphosphine was analyzed by gas chromatography on a Varian 2400 flame ionization gas chromatograph equipped with a phosphorus-nitrogen detector using a $6-\mathrm{ft} \mathrm{OV}-1$ column operating at $30^{\circ} \mathrm{C}$ using nitrogen as the carrier gas. P_{4} was analyzed by oxidation by 1 or 5 mL of concentrated HNO_{3} at $150^{\circ} \mathrm{C}$ for $7 \mathrm{~h}(1 \mathrm{~mL}$ of acid for $0.5-1-\mathrm{h}$ irradiation, 5 mL for longer times). ${ }^{20}$ An additional 5 or 15 mL of $5 \mathrm{M} \mathrm{HNO}_{3}$ was added, and heating was continued for 2 h at 140 ${ }^{\circ} \mathrm{C}$. The solutions were transferred to 25 - or $100-\mathrm{mL}$ volumetric flasks, the cells were rinsed with double-distilled water, and the pH of the combined solutions was adjusted to 7 ± 2 by using $\mathrm{NH}_{4} \mathrm{OH}$. A $15-\mathrm{mL}$ aliquot of this solution was mixed with 10 mL of sodium molybdate solution (7.6 g of $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in 100 mL of concentrated HCl diluted to 500 mL with water) in a separatory funnel. The solution was shaken twice with 10 mL of $4: 1 \mathrm{CHCl}_{3}-n$-butyl alcohol for 1 min . The combined organic extracts were diluted to 25 mL , and the absorbance was measured at 310 nm . A reagent blank was performed in exactly the

[^7]same way on an empty cell. The estimated error is $\pm 5 \%$. Pressure measurements were performed by using an oil manometer containing dibutyl phthalate or with an MKS Baratron Type 77 pressure meter. No mercury was used in the vacuum system.

Irradiation Experiments. Most photolysis were performed at room temperature by using an iodine discharge lamp. ${ }^{1,30}$ The wavelengths less than 206.2 nm were filtered with 1 cm of distilled water. In a few initial experiments a low-pressure mercury lamp was used. ${ }^{31}$ Samples were irradiated in $10 \times 2.8 \mathrm{~cm}$ cylindrical quartz cells of volume $67.5-75$ mL . Quantum yield measurements were performed by using a merry-go-round apparatus using cells containing 100 torr of ammonia as an actinometer $(\Phi=0.31))^{32}$

Materials. PH_{3} (Matheson electronic, 99.999%) was purified by three distillations from an ether slush bath at $-116^{\circ} \mathrm{C}$. Ammonia (Matheson, anhydrous $\mathbf{9 9 . 9 9 9 \%}$) and SF_{6} (Matheson, instrument purity $\mathbf{9 9 . 9 9 9 \%}$) were subjected to freeze-pump-thaw cycles, to remove noncondensable gases, before use. Hydrogen (Ultra High Purity 99.999\%) was obtained from Matheson and used without further purification.

Photochemical Synthesis of $\mathrm{P}_{2} \mathrm{H}_{4} . \mathrm{PH}_{3}$ (87 torr) was photolyzed with the low-pressure mercury lamp for 15 min at which time the UV absorption at 270 nm due to $\mathrm{P}_{2} \mathrm{H}_{4}$ reached a maximum, the $\mathrm{P}_{2} \mathrm{H}_{4}$ was separated by condensation at $-116^{\circ} \mathrm{C}$, and the entire process was repeated 20 additional times. The IR and UV spectra of the material condensing at $-116^{\circ} \mathrm{C}$ were identical with that of an authentic sample of $\mathrm{P}_{2} \mathrm{H}_{4}{ }^{18}$ The photoproduct and authentic materials exhibited the same retention time (2.2 min) by gas chromatography. A peak with the retention time of $\mathrm{PH}_{3}(1.2 \mathrm{~min})$ was also present in both the authentic and photochemically synthesized $\mathrm{P}_{2} \mathrm{H}_{4}$. It persisted even after extensive purification of the authentic $\mathrm{P}_{2} \mathrm{H}_{4}$ and probably results from decomposition of the $\mathrm{P}_{2} \mathrm{H}_{4}$ in the gas chromatography. No other products were detected in the photolysate. $\mathrm{P}_{2} \mathrm{H}_{4}$ was analyzed spectrophotometrically (Figure 1) by its absorbance at $235 \mathrm{~nm}\left(62.74 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ or $250 \mathrm{~nm}\left(\epsilon 304 \mathrm{M}^{-1}\right.$ cm^{-1}) after correcting for the absorbance of P_{4}. The estimated error in $\mathrm{P}_{2} \mathrm{H}_{4}$ analysis is $\pm 10 \%$.

Irradiation of PH_{3} at Different Time Intervals. $\mathrm{PH}_{3}(87$ torr) was irradiated with the iodine lamp (206 nm) at room temperature for different time intervals. The results are given in Table I and plotted in Figure 2. The ratio of the rate constants for the disproportionation to combination for $\mathrm{PH}_{2}\left(k_{4} / \mathrm{k}_{9}\right)$ were calculated by considering reactions 4-6 and 9 .

$$
\begin{aligned}
\mathrm{d}\left(\mathrm{P}_{2} \mathrm{H}_{4}\right) / \mathrm{d} t & =k_{9}\left(\mathrm{PH}_{2}\right)^{2} \\
\mathrm{~d}\left(\mathrm{P}_{4}\right) / \mathrm{d} t & =k_{6}\left(\mathrm{P}_{2}\right)^{2}
\end{aligned}
$$

Assuming

$$
\begin{gathered}
\frac{\mathrm{d}\left(\mathrm{P}_{2}\right)}{\mathrm{d} t}=0=k_{5}(\mathrm{PH})^{2}-2 k_{6}\left(\mathrm{P}_{2}\right)^{2} \\
\left(\mathrm{P}_{2}\right)^{2}=k_{5}\left((\mathrm{PH})^{2} / 2 k_{6}\right) \\
\mathrm{d}(\mathrm{PH}) / \mathrm{d} t=0=k_{4}\left(\mathrm{PH}_{2}\right)^{2}-2 k_{5}(\mathrm{PH})^{2} \\
(\mathrm{PH})^{2}=k_{4}\left(\mathrm{PH}_{2}\right)^{2} / 2 k_{5} \\
\mathrm{~d}\left(\mathrm{P}_{4}\right) / \mathrm{d} t=k_{6}\left(\mathrm{P}_{2}\right)^{2}=k_{6} \frac{k_{5}}{2 k_{6}} \frac{k_{4}}{2 k_{5}}\left(\mathrm{PH}_{2}\right)^{2}=\frac{k_{4}}{4}\left(\mathrm{PH}_{2}\right)^{2} \\
\lim _{t \rightarrow 0} \frac{\mathrm{~d}\left(\mathrm{P}_{4}\right) / \mathrm{d} t}{\mathrm{~d}\left(\mathrm{P}_{2} \mathrm{H}_{4}\right) / \mathrm{d} t}=\lim _{t \rightarrow 0} \frac{n_{\mathrm{P}_{4}}}{n_{\mathrm{P}_{2} \mathrm{H}_{4}}}=\frac{k_{4}}{4 k_{9}}
\end{gathered}
$$

Effect of Pressure on PH_{3} Photolysis. The effect of variation in PH_{3} pressure on the yields of $\mathrm{P}_{2} \mathrm{H}_{4}$ and P_{4} is given in Table II. The photolyses were performed at room temperature by using a $206-\mathrm{nm}$ light source. Similar experiments performed on N_{2} and SF_{6} as the added gas are given in Table III.
Flash Photolysis of $\mathbf{P H}_{3}$. The flash photolysis studies were performed by Professor R. Strong ${ }^{33}$ on a sample containing about 1 torr of PH_{3} and 200 torr of H_{2}. The variation in transmittance with time was measured at single wavelengths at both 100 and $500 \mu \mathrm{~s} / \mathrm{cm}$. A long-lived species was formed which absorbed in the $225-280-\mathrm{nm}$ region. An aerosol of P_{4} formed after about 10 ms . The normalized absorption spectrum given in Figure 4 was determined from the absorbances measured at various wavelengths $300 \mu \mathrm{~s}$ after the flash, which were corrected for the variation
(30) Ellmann, D. C. Ph.D. Thesis, Rensselaer Polytechnic Institute, 1971.
(31) Ferris, J. P.; Chen, C. T. J. Am. Chem. Soc. 1975, 97, 2962-2967.
(32) Reference 3, p 374.
(33) Brosseau, V. A.; Basila, J. R.; Smalley, J. F.; Strong, R. L. J. Am. Chem. Soc. 1972, 94, 716-719.
in the intensity of the flash lamps by dividing by the absorbance of the sample at 235 nm measured on the Cary 2191 h after the flash, the 1-h interval allowing the aerosol of P_{4} to settle. The results are given in Table IV.

It was possible to estimate the pseudo-second-order rate constant for the combination of PH_{2} to $\mathrm{P}_{2} \mathrm{H}_{4}$ (reaction 9) from the rate of formation of $\mathrm{P}_{2} \mathrm{H}_{4}$. With the assumption that the only reaction PH_{2} is recombination of $\mathrm{P}_{2} \mathrm{H}_{4}$, then at time t

$$
\left(\mathrm{PH}_{2}\right)_{t}=2\left[\left(\mathrm{P}_{2} \mathrm{H}_{4}\right)_{\infty}-\left(\mathrm{P}_{2} \mathrm{H}_{4}\right)_{t}\right]
$$

For a second-order reaction

$$
\begin{gathered}
\frac{1}{\left(\mathrm{PH}_{2}\right)_{t}}-\frac{1}{\left(\mathrm{PH}_{2}\right)_{t_{0}}}=2 k_{9}\left(t-t_{0}\right) \\
\left(\mathrm{P}_{2} \mathrm{H}_{4}\right)_{t}=\frac{A_{t, \lambda}}{\epsilon_{\lambda} 10} \\
\left(\mathrm{PH}_{2}\right)_{t}=\frac{A_{\odot, \lambda}-A_{t, \lambda}}{5 \epsilon_{\lambda}}
\end{gathered}
$$

where $A_{\ell, \lambda}=$ absorbance of $\mathrm{P}_{2} \mathrm{H}_{4}$ at λ and time t and $\epsilon_{\lambda}=$ exctinction coefficient of $\mathrm{P}_{2} \mathrm{H}_{4}$ at λ.

A plot of $1 /\left(\mathrm{PH}_{2}\right)_{t}-1 /\left(\mathrm{PH}_{2}\right)_{t_{0}}$ vs. $t-t_{0}$ gave a straight line with slope of $2 k$. The rate constants were evaluated at $225,232.5,235$, and 245 nm . The plots were strongly dependent on the A_{∞} values which were difficult to measure accurately. A value of $(5.4 \pm 2.4) \times 10^{9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ was calculated from the rate constants determined at the above wavelengths.

Quantum Yields. Quantum yields were determined from the product yields and the quanta absorbed on the basis of NH_{3} actinometry. The quantum yields for zero time of irradiation were determined from least-squares analyses ${ }^{34}$ of quantum yields plotted against time of irradiation (Table V). A value of $\Phi_{\mathrm{PH}_{3}}=1.65 \pm 0.26$ was calculated by using all the data. If the results in Table V at 5.67 einsteins are omitted, then $\Phi_{\mathrm{PH}_{3}}=1.78 \pm 0.18$. Values of $\Phi_{4 \mathrm{PP}_{4}}$ of 0.013 ± 0.15 and $0.041 \pm$ 0.156 were calculated from the data with and without the result at 5.67 einsteins, respectively. Initial quantum yield for H_{2} is 0.43 ± 0.23 and for $\mathrm{P}_{2} \mathrm{H}_{4}$ is 0.80 ± 0.08.

Acknowledgment. We thank Dr. John Morimoto for the statistical analysis of the quantum yield data and Professor Robert Strong for the flash photolysis studies. The research was supported by Grant NGR 33-018-148 from NASA.
(34) Burr, I. W. "Applied Statistical Methods"; Academic Press: New York, 1974.

The Molecular Structure of the Cubanelike Compound, $\left[\mathrm{Mo}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)\left(\mu_{3}-\mathrm{S}\right)\left(\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}\right)\right]_{4}$, and a Description of Its Bonding

A. W. Edelblut, K. Folting, J. C. Huffman,* and R. A. D. Wentworth*
Contribution No. 3561 from the Molecular Structure Center and the Department of Chemistry, Indiana University. Bloomington, Indiana 47405. Received August 28, 1980

Abstract

The tetramer, $\left[\mathrm{Mo}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right)\left(\mu_{3}-\mathrm{S}\right)\left(\mathrm{S}_{2} \mathrm{P}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{2}\right)\right]_{4}$, crystallizes in the triclinic space group $P \overline{1}$ with $a=24.179$ (5) $\AA, b=14.413$ (3) $\AA, c=12.590(3) \AA, \alpha=75.78(1)^{\circ}, \beta=59.65(1)^{\circ}$, and $\gamma=58.35(1)^{\circ} \mathrm{at}-170^{\circ} \mathrm{C}$. The structure was solved by using 5893 unique reflections having $F>2.33 \sigma(F)$. Full-matrix, least-squares refinement converged to final residuals of $R_{F}=0.085$ and $R_{w F}=0.070$. The symmetry of the elongated [$\left.\mathrm{MoN}\left(\mu_{3}-\mathrm{S}\right)\right]_{4}$ moiety is adequately described by the $D_{2 d}$ point group. Two Mo-Mo bonds are present. Both Mo-N bond distances and Mo-N-C (aryl) bond angles point to triple-bond character in this linkage. A molecular orbital treatment accounts for the binding of the ligands to the core including four $\mathrm{Mo} \equiv \mathrm{N}$ bonds, the metal-metal bonds, and the observed diamagnetism. The molecular orbital treatment is also able to account for the formation of a tetramer when $\left[\mathrm{MoO}(\mu-\mathrm{S})\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)\right]_{2}$ is reduced electrochemically.

Cubane-like $\mathrm{Fe}_{4} \mathrm{~S}_{4}$ clusters have become increasingly well-known in recent years. ${ }^{1}$ Even more recently, double cubane-like molecules containing two $\mathrm{MoFe}_{3} \mathrm{~S}_{4}$ clusters have been obtained and structurally characterized. ${ }^{2}$ The isolation of a tetramer of $\mathrm{Mo}(\mathrm{V})$, which we have suggested ${ }^{3}$ to be $\left[\mathrm{Mo}(\mathrm{N}(\mathrm{tol}))\left(\mu_{3}-\mathrm{S}\right)\left(\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right)\right]_{4}$ (tol =p-CH3 $\mathrm{C}_{6} \mathrm{H}_{4}$) with a cubane-like $\mathrm{Mo}_{4} \mathrm{~S}_{4}$ cluster, is one of the more unusual results from our recent studies of arylimido complexes of molybdenum. ${ }^{4}$ Since we made that suggestion, the

[^8](3) Edelblut, A. W.; Wentworth, R. A. D. Inorg. Chem. 1980, 19, 1110.
structure of another tetrameric $\mathrm{Mo}(\mathrm{V})$ complex with an authenticated cubane-like $\mathrm{Mo}_{4} \mathrm{O}_{4}$ cluster, $\left[\mathrm{MoO}\left(\mu_{3}-\mathrm{O}\right)(\mu-\right.$ $\left.\left.\mathrm{O}_{2} \mathrm{PMe}_{2}\right)_{1 / 2}\left(\mu-\mathrm{OSPMe}_{2}\right)_{1 / 2}\right]_{4}$, has also appeared ${ }^{5}$ and lends further credence to our original suggestion.
This paper reports the structural characterization of our tetramer and shows that the suggested structure is correct. Moreover, this paper examines the bonding within the tetramer and also accounts in a reasonable fashion for the formation of a tetramer, proposed to be $\left[\mathrm{MoO}\left(\mu_{3}-\mathrm{O}\right)\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)\right]_{4}^{-}$, after the reduction of $\left[\mathrm{MoO}(\mu-\mathrm{O})\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)\right]_{2}{ }^{6}$

Experimental Section

Crystals of $\left[\mathrm{Mo}(\mathrm{N}(\mathrm{tol}))\left(\mu_{3}-\mathrm{S}\right)\left(\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right)\right]_{4}$ from the original preparation were employed in this structural study. Unit-cell dimensions and
(4) (a) Haymore, B. L.; Maatta, E. A.; Wentworth, R. A. D. J. Am. Chem. Soc. 1979, 101, 2063. (b) Maatta, E. A.; Wentworth, R. A. D. Inorg. Chem. 1979, 18, 2409. (c) Maatta, E. A.; Haymore, B. L.; Wentworth, R. A. D. Ibid. 1980, 19, 1055.
(5) Mattes, R.; Muhlsiepen, K. Z. Naturforsch., B: Anorg. Chem. Org. Chem. 1980, 35B, 265.
(6) De Hayes, L. J.; Faulkner, H. C.; Doub, W. H.; Sawyer, D. T. Inorg. Chem. 1975, 14, 2110.

[^0]: (1) To whom correspondence should be addressed.
 (2) Melville, H. Proc. R. Soc. London, Ser. A 1932, 138, 374-395. Ibid. 1933, 139, 541-557.
 (3) Noyes, W. A., Jr.; Leighton, P. A "The photochemistry of Gases"; Dover Publications: New York, 1966.
 (4) Mellor, J. W. "Comprehensive Treatise of Inorganic and Theoretical Chemistry"; Longmans, Green and Co., New York, 1928; Vol. III, pp 802-822.
 (5) Ridgway, S. T. Astrophys. J. 1974, 187, L41-L43. Ibid. 1974, 192, L51. Ridgway, S. T.; Wallace. L.; Smith, G. R. Astrophys. J. 1976, 207, 1002-1006.
 (6) Larson, H. P.; Treffers, R. R.; Fink, U. Astrophys. J. 1977, 211, 972-979.
 (7) Bregman, J. D.; Lester. D. F.; Rank, D. M. Astrophys. J. 1975, 202, L55-L56.
 (8) Hanel, R.; Conrath, B.; Flaser, M.; Herath, L.; Kunde, U.; Lowman, P.: Maguire, W.; Pearl, J.: Pirraglia, J.; Samuelson. R.; Gautier, D.; Horn, L.; Kumar, S.; Ponnamperuma. C. Science (Washington, D.C.) 1979, 206, 952-956.
 (9) Prinn, R. G.; Lewis, J. S. Science (Washington, D.C.) 1975, 190, 274-276.

[^1]: (10) Howland, G. R.; Harteck, P.; Reeves, R. R., Jr. Icarus 1979, 37, 301-306.
 (11) DiStefano, G.; Lenzi, M.; Margani, A.; Mele, A.; Xuan, C. N. J. Photochem. 1977, 7, 335-344.
 (12) Kleg, D.; Welge, K. H. Z. Naturforsch., A 1965, 20A, 124-131.
 (13) Norrish, R. G.: Oldershaw, G. A. Proc. R. Soc. London, Ser. A 1961, 262, 1-9.
 (14) Wiles, D. M.; Winkler, C. A. J. Phys. Chem. 1957, 61, 620-622.

[^2]: (15) Lee, J. H.; Michael, J. V.: Payne, W. A.; Whytock, D. A.; Stief. L. J. J. Chem. Phys. 1976, 65, 3280-3283.
 (16) Strobel, D. F. Astrophys. J. 1977, 214, L97-L99.
 (17) Harteck, P.: Reeves, R. R. Jr.; Thompson, B. A. Z. Naturforsch., A 1964, 19A, 2-6.

[^3]: (18) Nixon, E. R. J. Phys. Chem. 1956, 60, 1054-1059.
 (19) Evers, E. C.; Street, E. H., Jr. J. Am. Chem. Soc. 1956, 78, 5726-5730.
 (20) Halmann, M. "Analytical Chemistry of Phosphorus Compounds"; Wiley-Interscience: New York, 1972, p 30.

[^4]: (21) Groth, W. E.; Schurath, W.; Schindler, R. N. J. Phys. Chem. 1968, 72, 3914-3920.
 (22) Stief, L. J.; Payne, W. A. J. Chem. Phys. 1976, 64, 4892-4896.

[^5]: (23) Haines, M. H.: Bair, E. J. J. Chem. Phys. 1963, 38, 672-676.
 (24) Salzman, J. D.; Bair, E. J. J. Chem. Phys. 1964, 41, 3654-3655.

[^6]: (25) Gordon, S.; Mulac, W.; Nangia. P. J. Phys. Chem. 1971, 75, 2087-2093.
 (26) Stief, L. J. J. Chem. Phys. 1970, 52, 4841-4845.

[^7]: (27) Vera Ruiz, H. G.; Rowland, F. S. Geophys. Res. Lett. 1978, 5, 407-410.
 (28) Cowley, A. H.; Mitchell, D. J.; Whangbo, M.-H.; Wolfe, S. J. Am. Chem. Soc. 1979, 101, 5224-5231.
 (29) Wiles. D. M.; Winkler. C. A. J. Phys. Chem. 1957, 61, 902-903.

[^8]: (1) See, for example: (a) Berg, J. M.; Hodgson, K. O.; Holm, R. H. J. Am. Chem. Soc. 1979, 101, 4586 and references therein. (b) Toan, T.; Teo, B. K.; Ferguson, J. A.; Meyer, T. J.; Dahl, L. F. Ibid. 1977, 99, 408 and references therein. (c) Bernal, I.; Davis, B. R.; Good, M. L.; Chandra, S. J. Coord. Chem. 1972, 2, 61.
 (2) Wolff, T. E.; Berg, J. M.; Warrick, C.; Hodgson, K. O.; Holm, R. H.; Frankel, R. B. J. Am. Chem. Soc. 1978, 100. 4630. Wolff, T. E.: Berg, J. M.; Hodgson, K. O.: Frankel, R. B.: Holm, R. H. Ibid. 1979, 101, 4140. Wolff, T. E.; Berg, J. M.: Power, P. P.; Hodgson, K. O.; Holm, R. H.; Frankel, R. B. Ibid. 1979, 101, 5454. Wolff, T. E.; Berg, J. M.; Power, P. P.; Hodgson, K. O.: Holm, R. H. Inorg. Chem. 1980, 19, 430. Wolff, T. E.: Power, P. P.; Frankel, R. B.: Holm, R. H. J. Am. Chem. Soc. 1980, 102, 4694. Christou, G.; Garner, C. D.: Mabbs, F. E. Inorg. Chim. Acta 1978, 29, L189. Christou, G.; Garner, C. D.; Mabbs, F. E.; King, T. J. J. Chem. Soc., Chem. Commun. 1978, 740.

